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ABSTRACT

Coronal holes (CHs) are the source of high-speed streams (HSSs) in the solar wind, whose interaction with the slow solar wind
creates corotating interaction regions (CIRs) in the heliosphere. Whenever the CIRs hit the Earth, they can cause geomagnetic
storms. We develop a method to predict the strength of CIR/HSS-driven geomagnetic storms directly from solar observations
using the CH areas and associated magnetic field polarity. First, we build a dataset comprising the properties of CHs on the Sun,
the associated HSSs, CIRs, and orientation of the interplanetary magnetic field (IMF) at L1, and the strength of the associated
geomagnetic storms by the geomagnetic indices Dst and Kp. Then, we predict the Dst and Kp indices using a Gaussian Process
model, which accounts for the annual variation of the orientation of Earth’s magnetic field axis. We demonstrate that the polarity
of the IMF at L1 associated with CIRs is preserved in around 83% of cases when compared to the polarity of their CH sources.
Testing our model over the period 2010-2020, we obtained a correlation coefficient between the predicted and observed Dst
index of R = 0.63/0.73, and Kp index of R = 0.65/0.67, for HSSs having a polarity towards/away from the Sun. These findings
demonstrate the possibility of predicting CIR/HSS-driven geomagnetic storms directly from solar observations and extending
the forecasting lead time up to several days, which is relevant for enhancing space weather predictions.
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1 INTRODUCTION

Coronal holes (CHs) are large low density and low temperature re-
gions in the solar corona. Therefore, they appear as dark regions
when measured in extreme ultraviolet (EUV) and X-ray radiation.
CHs exhibit a dominant magnetic field polarity which results in an
’open’ magnetic field topology, i.e., the magnetic field reaches far
into interplanetary space before it closes back to the Sun. Along
these field lines, solar plasma is accelerated towards interplanetary
space, forming the so-called high-speed solar wind streams (HSSs)
with velocities up to 800 km/s (e.g., review by Cranmer 2009). The
magnetic field lines and HSSs are frozen-in together from their source
on the Sun, and travel away from the rotating Sun towards interplane-
tary space forming an Archimedian spiral known as the Parker spiral
(Parker 1958). Along the spiral trajectory, HSSs collide into the ambi-
ent slow solar wind, causing a compression of both plasma and mag-
netic fields on the rising-speed portion of the HSS (e.g. Parker 1963;
Sarabhai 1963; Carovillano & Siscoe 1969; Gosling et al. 1972). The
pattern of compression rotates with the Sun, and gives these regions
the name of corotating interaction regions (CIRs; Smith & Wolfe
1976).

The propagation time of a CIR from the Sun to Earth is about
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2–6 days. When a CIR hits the Earth, the interplanetary magnetic
field (IMF) carried by the CIR can interact with the Earth’s magneto-
sphere, enabling a magnetic reconnection. A magnetic reconnection,
being the trigger of a geomagnetic storm, is a recombination in the
magnetic field topology with a sudden release of solar wind mass,
energy and momentum towards Earth. It occurs when the IMF points
southward, i.e., it is antiparallel to the Earth’s magnetic field. This
corresponds to a negative Bz component of the IMF in GSM coordi-
nates, usually expressed by Bs, i.e., Bs = Bz when Bz < 0 and Bs is
not defined otherwise (see for example Verbanac & Bandić 2021).
As Earth rotates around the Sun, the orientation of Earth’s magnetic
field axis varies over the year. When we assume the IMF lying along
an Archimedian spiral, the varying angle between Earth’s magnetic
field axis and the IMF varies the chance for magnetic reconnection
over the year. This is known as the Russel McPherron (RM) effect
(Russell & McPherron 1973). For polarities towards the Sun it results
in the largest Bs in spring equinox, and for IMF polarities directed
away from the Sun in fall equinox. A shortcoming of the RM model
is that the IMF is assumed to be in the direction of an ideal Parker
spiral whereas the IMF vector varies around this ideal direction due
to alfvenic oscillations and turbulences. From the in situ IMF data,
Verbanac & Bandić (2021) have recently obtained the statistical pat-
terns of Bs and Bs ordered according to the IMF polarity through a
solar cycle. They showed that Bs ordered according to the polarity
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differs from the one predicted by the RM model and exhibits a pair of

spectacles pattern: when the IMF points toward/away from the Sun
the field is enhanced in spring/fall and reduced in fall/spring. There-
fore, the pattern of an experimentally measured Bs ordered according
to the polarity differs from those predicted by the RM model, and the
differences are due to the neglection of the IMF variations around
the ideal direction used in the RM model. The product of Bs with the
solar wind velocity, Bsv, plays a crucial role for the magnetospheric
dynamics, and drives geomagnetic activity (Prölss 2004). The geo-
magnetic activity is measured, amongst others, by the Dst index and
by the Kp index. The Dst index is associated with the geomagnetic
activity at low latitudes caused by ring current and tail currents, and
is measured by the depression of the equatorial magnetic field at the
Earth’s surface. The Kp index is quasi-logarithmic index, associated
to the geomagnetic activity at mid latitudes (Prölss 2004).

The majority of Dst and Kp forecasts at Earth employ the in
situ IMF and solar wind observations in the libration point L1.
There are three main approaches: (1) empirical approaches that an-
alyze the relations between Dst peaks and geoefficient solar wind
and IMF parameters (e.g. Akasofu 1981; Petrukovich & Klimov
2000; Gonzalez & Echer 2005; Kane & Echer 2007; Mansilla
2008; Yermolaev et al. 2010; Echer et al. 2013; Rathore et al.
2014); (2) analytical approaches based on first-order differ-
ential equations (e.g. Burton et al. 1975; O’Brien & McPherron
2000a,b; Podladchikova & Petrukovich 2012; Podladchikova et al.
2018) and magnetospheric models (Katus et al. 2015; Rastätter et al.
2013) to describe the Dst evolution as a function of geoef-
fective solar wind parameters; (3) machine learning approaches
to predict the Dst and Kp index, that use statistical mod-
els, artificial neural networks and nonlinear auto-regression tech-
niques (e.g. Lundstedt et al. 2002; Temerin & Li 2002; Wei et al.
2004; Wing et al. 2005; Pallocchia et al. 2006; Sharifie et al. 2006;
Zhu et al. 2006; Amata et al. 2008; Bala & Reiff 2012; Revallo et al.
2014; Andriyas & Andriyas 2015; Shprits et al. 2019). As the solar
wind parameters are measured only close to Earth, the lead warning
time of these models is only 1-2 hours.

To increase the lead warning time to several days, solar data
from the vicinity of the Sun has to be employed. One could either
forecast the solar wind properties near Earth from solar observa-
tions or the geomagnetic effects directly from solar observations.
The former has been done, e.g., by using an empirical relation-
ship between the area of coronal holes and the solar wind velocity
near Earth (e.g., Nolte et al. 1976; Robbins et al. 2006; Vršnak et al.
2007a; Verbanac et al. 2011a,b, 2013; Rotter et al. 2012, 2015;
Hofmeister et al. 2018). This relationship was recently explained by a
propagational effect of HSSs from the Sun to Earth (Hofmeister et al.
2020, 2022). The latter has been done by Vršnak et al. (2007b). They
focused on 100 days in 2005 when the solar wind was modulated
primarily by HSSs, producing a relationship between CH areas and
the Dst index. Verbanac et al. (2011a) focused on the same study
period, but beside the Dst-CH relationship additionally provided a
relationship between CH area and the Ap index, a linearly scaled Kp
index. Both studies accounted for the annual variation of Bs, by using
the CH polarity. They showed that the geomagnetic indices ordered
by the polarity contains the imprint of Bs which can be employed
to mimic the variations in geomagnetic indices, notwithstanding the
physics that explains it.

In the present study, we analyze the relationships of geomagnetic
indices Dst and Kp separately for coronal holes having a polarity
toward and away from the Sun, during the decade 2010–2020. This
allows us to relate the polarity of the coronal holes to the strength
of geomagnetic storms over the year and to analyze this relationship

Figure 1: SDO/AIA 193 Å filtergram recorded on 2017 June 13 at
18:00:04 UT. The blue-outlined structures are the CHs on the solar
corona. The green ellipse is the 15 degrees wide central meridional
slice.

in detail. From this analysis, we provide a novel forecasting model
for geomagnetic indices Dst and Kp directly from solar observations.
Since the propagation time of solar wind from the Sun to Earth is
about 2–6 days, predicting geomagnetic storms from their sources
on the Sun increases the warning times from hours to days.

2 DATA AND DATA PREPARATION

We use the following data sets: CH fractional area and mean magnetic
flux density within the CH, in situ solar wind velocity and IMF
strength, and geomagnetic indices Dst and Kp. We analyze the period
from October 2010 to December 2020, covering most of solar cycle
24, and we utilize time series at a cadence of 1 hour.

We employ the operational tool hosted at the University of Graz
to detect coronal hole regions. It analyzes EUV 193 Å filtergrams,
recording the solar corona at a temperature of 1.6 MK taken by
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) onboard
the Solar Dynamics Observatory (SDO; Pesnell et al. 2012). Then, a
segmentation method based on the intensity distribution is applied to
identify CHs regions (for more details, see Rotter et al. 2012). We de-
fine the CH area as the fractional area CHs cover within a 15 degrees
wide meridional slice around the solar central meridian. Figure 1
shows the central meridional slice as seen from Earth in the heliopro-
jective coordinate frame, and the CHs detected by the segmentation
method. The segmented CH masks within the central meridional
slice are projected and co-registered to the photospheric line-of-
sight magnetograms measured by the Helioseismic Magnetic Imager
(HMI; Scherrer et al. 2012) onboard SDO. They provide an estimate
of the mean magnetic flux density of the CHs and their polarities (cf.,
Hofmeister et al. 2017). For the solar wind speed and the IMF, we use
data measured in situ at L1 and retrieved via the OMNI database. For
the solar wind speed, it uses measurements from the Solar Wind Elec-
tron, Proton and Alpha Particle Monitor (SWEPAM; McComas et al.
1998) onboard Advanced Composition Explorer (ACE; Stone et al.
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1998) and Solar Wind Experiment (SWE; Ogilvie et al. 1995) on-
board the Wind spacecraft (Ogilvie & Desch 1997), propagated for-
ward in time to the Earth bow shock. The IMF is measured by input
data from the ACE’s Magnetometer (MAG; Smith et al. 1998)) and
the Wind’s Magnetic Field Investigation (MFI; Lepping et al. 1995)
measurements. The Dst index is retrieved from the World Data Cen-
ter (WDC) for Geomagnetism in Kyoto1 . Dst is derived from hourly
values of horizontal magnetic field variations measured at four low-
latitude geomagnetic observatories between 28° and 34° northern
or southern geomagnetic latitude. The Kp index is calculated by
the German GeoForschungsZentrum (GFZ) in Potsdam 2. Kp is the
arithmetic mean of the 3-hour quasi-logarithmic K-index from 13
observatories between 44° and 60° northern or southern geomag-
netic latitude. To reduce the statistical noise, we smoothed all the
data sets with a forward-backward exponential smoothing method
(Brown 1963). It uses an exponential window function with a single
parameter, called smoothing factor, to reduce the response to rapid
changes (such as noise) in the input signal. It is set to a value between
0 and 1, where lower values cause the output to respond slowly to
changes and vice-versa. In our analysis, the smoothing factor is set
equal to 0.40.

2.1 Gaussian Process Regression

In this study, we use the Gaussian Process regression (GPR;
Rasmussen & Williams 2005) to fit the functions of solar wind speed,
v, and the ratios Dst/v and Kp/v. For more information, see Appendix
A. The GPR can conveniently be applied to fit very flexible non-
linear problems when the number of available data is limited, as in
the present case. It assumes the observations " approximated at input
# by a predictive function $ , from an ensemble of functions. The
function $ is a Gaussian process (GP) specified by its mean and stan-
dard deviation functions, written as $ (#) ∼ %&('(#), ((#)). In this
study, we consider as predictive function only the mean '(#) of $ .
This corresponds to the average of the ensemble of realizations. To
get the formulae of '(#) and ((#), the GPR requires the choice of a
prior function, also called kernel, which bears the information about
the shape and structure the output " is expected to have. The shape of
the kernel function is modulated by the hyperparameters (! and )! .
Supposing our output " has a non-null noise in its measurement, we
add a third hyperparameter, (n. (n is an independent identically dis-
tributed Gaussian noise that measures the uncertainty in our output.
Finding the optimal hyperparameters, i.e the set of hyperparameters
that best approximate the problem, is an optimization problem. The
objective function to be optimized is the negative log-likelihood,
described in Equation A4. Substituting the hyperparameters in the
formulae of '(#) and ((#), the predictive function $ is completely
defined.

3 FORECASTING MODEL

The geomagnetic Dst and Kp indices depend on Bs and the solar
wind velocity.

*+, ∼ -+ · .. (1)

When building the model of Dst and Kp, we try to take their effects
into account separately. The Bs effect is linked to the polarity of the

1 https://wdc.kugi.kyoto-u.ac.jp/dstdir
2 https://datapub.gfz-potsdam.de/download/10.5880.Kp.0001/Kp_definitive/

IMF, PL1, and the orientation of the Earth’s magnetic field axis, that
depends on the day of the year (DOY). In turn, the polarity of the
IMF and the orientation of the Earth’s magnetic field axis impact the
Dst index normalized to the solar wind velocity,

-+ ∼ $1 (&L1, */0 ) ∼ *+,/.. (2)

The polarity of the IMF in CIRs at L1 is related to the polarity of
the CH sources on the Sun as their solar source regions (Choi et al.
2009). Hence, we use the polarity of the CHs in the place of the IMF
polarity at L1 to rely only on solar observations. Then, we account for
the effect of the solar wind velocity by studying its relationship with
the area of CHs within the central meridional slice, . ∼ $2 (1CH).
Combining these effects, we are able to predict Dst and Kp as:

*+, = (*+,/.) · . ∼ $1(&L1, */0 ) · $2 (1CH). (3)

The development of the forecasting model comprises 6 steps:

(i) We detect the signatures responsible for CIR/HSS-driven geo-
magnetic storms in all the available time series.

(ii) We associate the signatures belonging to the same event to
each other.

(iii) We compare polarities from CHs on the Sun to the solar wind
at L1 to evaluate the reliability of a polarity estimation.

(iv) We derive a function to approximate the solar wind speed
from areas of CHs.

(v) We fit a periodic function to the ratios Dst/v and Kp/v sepa-
rated by CH polarity on the day of the year (DOY).

(vi) We combine the results to formulate a prediction model for
Dst and Kp as a function of CH polarity, CH area and DOY.

In the following, we describe each of these steps in more detail.

3.1 Event Detection

First, we build a dataset comprising the properties of CHs on the Sun,
the associated HSSs, CIRs, and orientation of the IMF at L1, and
the strength of the associated geomagnetic storms. To detect coronal
holes, we look for peaks in the timeline of the areas that CHs cover
within a meridional slice. We require that the CHs cover at least 5 %,
of the slice, and their coverage must be at least 3 %, higher than the
minimum coverage in the days around. We require a minimum time
period between one peak and another of 3 days. This leads to 540
CHs area signatures. Following previous studies (Owens et al. 2005,
2008; Reiss et al. 2016), we identify peaks in the solar wind profiles,
by requiring that the solar wind velocity peaks exceed 400 km/s. We
require their prominence, i.e. the vertical distance between a peak
and its surrounding minimum, to be at least 60 km/s. We require the
minimum time period between two neighboring peaks to be 3 days.
We reject peaks which are caused by interplanetary coronal mass
ejections (ICMEs) employing the Cane & Richardson (2003) ICME
list3. We further exclude all HSS peaks from our dataset which could
be affected by close-by ICMEs, i.e., we remove all HSSs peaks in the
2 days preceding and following the ICME window. This procedure
results in 367 HSSs signatures. For the IMF signatures, we search
for the local maximum between [-3, -0.5] days from the solar wind
velocity peak. We take this time window because the IMF peaks in the
CIR compression region, and the compression region preceeds the
HSS region having the maximum velocity. For Dst and Kp, we look
for peaks between the IMF peak and 2 days following the matching
solar wind velocity peaks. Dst and Kp can culminate within the CIR

3 http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm
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region, but as they are cumulative geomagnetic effects, we can find
their peak also a few days later. When the local maxima or minima
of either the IMF, Dst or Kp do not correspond to a peak value, we
remove them from the dataset. This results in 365 HSSs, IMF, Dst
and Kp signatures.

Figure 2 shows the timelines of the CH areas, solar wind velocity,
IMF, Dst, and Kp. The marked peaks are those just collected, and
filtered by the next two steps to set up the forecasting model.

3.2 Event Association

Having the individual peaks in the CH areas, solar wind velocity, IMF,
Dst and Kp, we need to relate them to causal chain of events. The
event association requires that each peak of the solar wind velocity
is associated with no more than one detected peak from the other
parameters (CH area, IMF, Dst, Kp). The signatures of the solar
wind velocity and those of IMF, Dst and Kp have already been
associated with each other during the detection process. To associate
the signatures of the solar wind velocity to those of CHs area we
make use of the following approach. We focus separately on each of
the detected solar wind velocity signatures. We search for the closest
peak in CH area within a time window of [-6, -2] days, measured
from the identified solar wind velocity peak. At the end of this step,
unpaired signatures are removed. Amongst the 365 peaks of the solar
wind velocity and the 540 peaks of CH area, we associated 259 pairs.
The number of the events decreases because not every CIR from
CHs actually hits the Earth. For three CH events, the CH event have
been associated to two different close-by solar wind events. We kept
the events having the highest prominence in the solar wind events,
reducing our data set to 256 pairs. In total, we found 256 geomagnetic
storm events having one-to-one correspondence in the signatures of
the solar wind velocity, CH area, IMF, Dst, and Kp.

3.3 Comparison of the HSS polarity at L1 with the polarity of

coronal holes

Since the polarity of the IMF at L1 is related to the polarity of CHs
within the central meridional slice, we want to check whether:

sgn(&CH) = sgn(&L1). (4)

PCH is the polarity of the CHs, i.e., the ratio of the signed to unsigned
vertical magnetic field strength derived from all CHs in the central
meridian slice. PL1 is the magnetic polarity of the IMF. We define
it following Neugebauer et al. (2002), as the normalized IMF vector
projected to the expected direction of the Parker spiral:

&L1 = (-" − Ω2-#/. cos 3)/[
√

1 + (Ω245+3/.)2
√

-2
" + -

2
# ]. (5)

Here -" and -# are the radial and tangential component of the IMF,
3 is the latitudinal position of the spacecraft in HCI coordinates, v is
the solar wind bulk velocity, 2 = 1 AU is the distance between Earth
and Sun, and Ω = 2.7 × 106 s−1 is the solar rotation rate.

According to our definitions, the polarities of the CHs and of the
solar wind are both in the interval from [−1, +1], where the sign
refers to the predominant direction of the magnetic flux. Positive
values correspond to a flux directed away from the Sun, and negative
values toward the Sun. As values close to zero do not show a pre-
dominant direction of the magnetic field, we classify values between
[−0.1, +0.1] as not defined. Figure 3 shows the derived polarity, PL1,
of the IMF at L1 (top panel) and the polarity of CHs within the
central meridional slice, PCH (bottom panel) for the year 2016. The

bar plots in the middle panel display the predominant polarity di-
rection of PL1 (top) and PCH (bottom). From the bar plots, we can
see that the polarity on the Sun usually matches well the polarity at
L1, preceding it by 2–6 days. This is consistent with the solar wind’s
propagation time from the Sun to L1.

Comparing the polarity of CH events on the Sun with the polarity
of the IMF events at L1, we find that the polarity is conserved in
around 83 % of events. This opens the possibility to use the magnetic
field derived directly from solar observations instead of that at L1.
Of the remaining 17 %, less than 1 % comes from events with non

defined polarity. A high percentage of polarities does not match
mostly because multiple coronal holes with different polarities are in
the central meridional slice at the same time. All the events where
the polarity between L1 and that on the Sun do not match or it is
not defined are removed from the further analysis. This reduces our
dataset to 212 events.

3.4 Gaussian process regression for predicting velocity peaks

from CH area

To account for the effect of the solar wind velocity on the Dst and Kp
indices, we first fit an empirical relationship that links the solar wind
velocity to the CHs area on the Sun. We fit the GPR model with the
constraint of having a velocity of 400 km/s at zero CHs area, which
corresponds to the velocity of the slow solar wind. We employ as
prior covariance function of the GPR the radial basis function (RBF,
Equation (A1)).

The predictive Gaussian process (GP) of the solar wind velocity
has the form:

.(1CH) ∼ %&('$ (1CH), ($ (1CH)), (6)

and it depends only on the values of CH area. Here,'$ and($ are the
predicted mean function and predicted standard deviation function
of .(1CH). The fitted hyperparameters are shown in Table 1.

Figure 4(a) shows the solar wind peak velocity versus the CH area.
The solid line shows the predicted mean function, '$ , from the GP
fitting, and the shaded region depicts the GP’s uncertainty, corre-
sponding to the 95 % confidence interval. The fitted function shows
a rise of '$ from 400 to approximately 600 km/s corresponding to
an increase of CH area from 0 to 0.3. After that we see the saturation
of '$ around 600 km/s. Figure 4(b) shows the predicted versus the
measured solar wind velocity peaks. On the #-axis there are the ob-
served solar wind events, v, and on the "-axis the solar wind peaks
predicted, vpr. The red line is a linear least-square fit to the data and
the green line is the perfect one-to-one correspondence with v = vpr.
We see that the slope of the linear fit is much lower than 1, i.e. the
slope of the one-to-one correspondence. This means that the fitted
model produces a lower rate of change in vpr with increasing ACH
than the one in the actual measurements. The forecast verification
metrics used to assess the results are the Pearson correlation coeffi-
cient R, the mean error ME, the absolute mean error MAE, and the
root mean squared RMSE computed between vpr and v, are given
in Table 2. We see the Pearson coefficient is R = 0.50, showing a
moderate correlation between vpr and v. The MAE and RMSE are
62 km/s and 76 km/s, respectively, while the velocities of the HSSs
in our dataset lie in a range of 200 km/s, i.e., from 450 km/s to 650
km/s. As a result of the strong scatter in the solar wind velocity pre-
dictions, we also expect a large scatter in the following Dst and Kp
predictions.

MNRAS 000, 1–13 (2022)



Geomagnetic storms and coronal holes 5

Figure 2: Event association for the year 2016. From top to bottom: CH area, ACH, solar wind velocity, v, IMF, Dst, and Kp. Each marker
followed by a number, shows the events that have completed the association scheme. Markers with the same number indicate the events that
originate from the same peak in CH area, and produced a geomagnetic storm. The green bars in the solar wind speed subplot represent periods
of ICME activity. Red markers show polarity away from the Sun, while the blue ones show polarity toward the Sun.

Figure 3: Polarity estimations for the year 2016. The top panel shows the polarity, PL1, of the IMF derived at L1 using Equation (5). The bottom
panel depicts the mean magnetic flux density of CH, PCH. Red bars in the middle panel represent positive polarity (away from the Sun), while
blue bars give negative polarity (toward the Sun), and white gaps indicate periods of not defined polarity. The bar-plot on top refers to PL1 and
the one on the bottom to PCH.

MNRAS 000, 1–13 (2022)



6 S. Nitti et al.

Table 1: Optimal hyperparameters of the the GPR model for the
solar wind velocity (top) and the ratios Dst/v and Kp/v separated by
the CH polarity (bottom).

(! )! (n

v 2.25 0.27 0.87

Dst/v
Toward 0.49 0.44 0.88
Away 0.70 0.44 0.76

Kp/v
Toward 0.38 0.45 0.93
Away 0.56 0.28 0.82

Figure 4: Panel (a) shows the solar wind velocity, v, versus CH
area, 1CH. The markers are the events extracted in our study period,
used for the GPR fitting. The solid line is the mean function of the
predictive GP (Equation 6), and the shaded region depicts the interval
where it is possible to find a realization of the solar wind velocity
from the CH area with 95 % confidence. Panel (b) is the scatter plot of
predicted solar wind velocity peaks (vpr) against observed solar wind
velocity events (v) in km/s. Red and green lines represent the linear
least-squares fit, and the y = x line, respectively. R is the correlation
coefficient among predicted and observed peaks.

3.5 Gaussian process regression for predicting Dst/v and Kp/v

The angle between Earth’s magnetic field axis and the IMF along
the Archimedian spiral varies over the year. This affects Bs and, in
turn, Dst/v and Kp/v. Since Bs separated by polarity shows a pair

of spectacles pattern, we fit the GPR model on the events Dst/v and
Kp/v separated by polarity employing a sinusoidal function. We,
hence, employ as prior a periodic kernel with a fixed periodicity of
365.24 days (Equation A2). This results in four functions, separately
for the events with polarity away from the Sun, Dst+/v+ and Kp+/v+,
and for events with polarity towards the Sun, Dst−/v− and Kp−/v−.

Table 2: Results of the forecast verification of the the GPR model for
the solar wind velocity (top) and the ratios Dst/v and Kp/v separated
by the CH polarity (bottom).

R Slope ME MAE RMSE

v 0.50 0.27 -1.47 62.24 75.74

Dst/v
Toward 0.52 0.23 −7 × 10−5 0.02 0.02
Away 0.68 0.42 −8 × 10−5 0.01 0.02

Kp/v
Toward 0.42 0.14 6 × 10−6 1 × 10−3 1 × 10−3

Away 0.61 0.32 7 × 10−6 8 × 10−4 1 × 10−3

Table 3: Results of the forecast verification computed using vpr and
v between observed geomagnetic indices and their predictions sepa-
rated by the CHs polarity.

R Slope ME MAE RMSE

vpr

Dst
Toward 0.63 0.26 0.43 9.64 12.39
Away 0.73 0.43 0.73 8.70 12.18

Kp
Toward 0.65 0.26 0.02 0.54 0.77
Away 0.67 0.39 -0.04 0.57 0.71

v
Dst

Toward 0.69 0.36 0.39 8.77 11.43
Away 0.76 0.52 0.06 8.16 11.45

Kp
Toward 0.71 0.52 0.01 0.54 0.67
Away 0.80 0.64 0.01 0.46 0.57

Considering as example the ratio Dst+/v+, its predictive GP is:

*+,+

.+
(*/0 ) ∼ %&('%+(*/0 ), (%+(*/0 )), (7)

where '%+ and (%+ are the functions of the mean and the standard
deviation dependent on the DOY. The optimal hyperparameters for
each of the four models are presented in Table 1.

Figure 5(a) and 5(b) belong to Dst/v and Figure 5(c) and 5(d)
belong to Kp/v, and shows their relationship versus the DOY. The
solid line shows the predicted mean function from the GP fitting,
and the shaded region depicts the 95 % confidence interval of the
GP. Figure 5(a), related to the CH polarity toward the Sun, and
5(b), related to the CH polarity away from the Sun, show an almost
mirror-like pattern for the measurement of Dst/v, with an annual
period. Events with CH polarity toward the Sun have the strongest
Dst drops normalized to the solar wind velocity around the spring
equinox, while the Dst/v ratio is rather constant for the rest of the
year. CH events with polarity away from the Sun show the same
pattern, but with the strongest Dst/v drops around the fall equinox.
Figures 5(c) and 5(d) show a similar trend, whereby maxima in Kp/v
are related to minima in Dst/v. This is because the Kp index shows
the most severe activity at its peaks, while the Dst index shows the
strongest geomagnetic activity at its drops.

In Table 2, we observe that Dst/v and Kp/v with polarities away
from the Sun are better predicted than with polarities toward the
Sun. In particular, Dst/v has a correlation coefficient of 0.68 when
the polarity is away and 0.52 when it is toward the Sun, whereas the
MAE is 0.01 nT/(km/s) when the polarity is away and 0.02 nT/(km/s)
when it is toward the Sun. For Kp/v, the difference in the correlation
coefficient R is 0.19, being similar to the Dst/v case. The MAE, on the
other hand, differs by 2 × 10−4 1/(km/s), being 1 × 10−3 1/(km/s) for
polarities toward the Sun and 8 × 10−4 1/(km/s) for polarities away
from the Sun.
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Figure 5: Ratio of Dst and Kp over the solar wind velocity, v, versus DOY when the events in the considered geomagnetic index took place.
The markers are the observations extracted in our study period. The solid line is the mean function of the predictive GP, whereas the shaded
region depicts the interval where it is possible to find a realization of the GP with 95 % of confidence. Panels (a) and (b) show the predictive
GP of Dst fitted on the events with CH polarity toward and away from the Sun, respectively. Panels (c) and (d) show the predictive GP of Kp
fitted on the events with toward and away polarity, respectively.

For the following analysis, we denote the predictions of Dst+/v+
as (*+,+/.+)&" , and we use the same notation also for predictions
of Dst−/v−, Kp+/v+ and Kp−/v−.

3.6 Forecasting geomagnetic indices Dst and Kp

To predict the Kp and Dst indices, we use the results of the previous
section. As input we use the CH area measured directly at the Sun, the
CHs polarity within the central meridional slice, and the DOY when
Dst and Kp events take place. To predict the Dst and Kp indices, we
multiply the predictions of Dst+/v+, Dst−/v−, Kp+/v+ and Kp−/v−
by the predicted peak values of solar wind velocity, vpr, from the CH
area:

(*+,+)&" =

(

*+,+

.+

)

&"

· .&" ;

(67+)&" =

(

67+

.+

)

&"

· .&" ;

(*+,−)&" =

(

*+,−

.−

)

&"

· .&" ;

(67−)&" =

(

67−

.−

)

&"

· .&" .

(8)

Figure 6(a) and 6(b) show the predicted Dstpr (solid line) and
observed Dst peaks (dashed line) as function of time. Thereby, Fig-
ure 6(a) shows the temporal evolution for peaks with CH polar-
ity directed towards the Sun, and 6(b) away from the Sun. Fig-
ures 6(c) and 6(d) present the scatter plot between the predicted
Dstpr and observed Dst peaks. Red and green lines indicate the linear
least-squares fits, and the one-to-one correspondence, respectively.

The plots are divided by polarity; data with polarity away from the
Sun are in the right panel, while those with polarity toward the Sun
are in the left panel.

In Figures 6(a) and 6(b), we see that the annual periodicity we
impose over Dst/v separated by the CH polarity makes the prediction
curve adapt to the oscillatory evolution of the Dst measurements
throughout the study period. In Figure 6(a), the predicted Dst peaks
follow the measured Dst peaks but are underestimated. In Figure 6(c),
observed peaks vary approximately between [−70, 0] nT, whereas the
predicted peaks are concentrated close to the average value of Dst, in
the narrower range [−40, −20] nT. The slope of the line describing
the trend is flat, being equal to 0.26, while the correlation coefficient
is R = 0.63. In Figure 6(b), the periodic pattern of Dst peaks is more
regular than in Figure 6(a), and the algorithm better approximates
Dstpr. This is reflected in the scatter plot in Figure 6(d), where the
slope is higher, being 0.43, and the correlation coefficient is R= 0.73.

Figure 7 shows the comparison between observed Kp and its pre-
dictions, Kppr, following the same scheme as Figure 6. In Figures 7(a)
and 7(b), values of Kppr follow the temporal evolution of the observed
Kp. In Figure 7(c), the slope is 0.26, i.e., flat, and the correlation co-
efficient is R = 0.65. In Figure 7(d), the slope is slightly steeper,
being 0.39, and the correlation coefficient is R = 0.67.

To show that the major source of uncertainty in our model is due
to our predictions of the solar wind speed, vpr, we re-derive the
forecasting of the geomagnetic indices using in Equation 8 the actual
solar wind velocity, v. Since it would reduce the lead warning period
to 1–2 hours, this approach does not offer an alternative methodology
for geomagnetic storm forecasting. However, it is a strategy to convey
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Figure 6: Comparison between predicted and observed peaks of Dst. Panels (a) and (b) show observed (dashed line) and predicted (solid line)
Dst peaks as function of time with CH polarity toward (blue) and away (red) from the Sun. Panels (c) and (d) give scatter plots between
predicted (y-axis) and observed Dst peaks (#-axis). Red and green lines represent the linear least-squares fit, described by the function in the
top-left corner, and the " = # line, respectively. R is the correlation coefficient between the predicted and observed quantities.

Figure 7: The same as Figure 6, but for the Kp index.
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that more sophisticated solar wind speed forecastings are expected
to significantly improve the final prediction of Dst and Kp. The
results are shown in Figure 8 and 9, where we see that the local
maxima and minima of Dst of Kp are now better approximated.
In particular, panels (c) and (d) in each of the Figures show larger
slopes of the linear least-square , i.e., closer to the ideal one-to-
one correspondence. They increase from 0.3–0.4, when using the
predicted velocities, to 0.5–0.6, when using the observed velocities.
The correlation coefficients also enhance, from approximately 0.6–
0.7 to 0.7–0.8. In Table 3, we see that when using the observed
velocities overall the forecasting verification metrics improve. The
largest improvement is observed for the Kp model with polarity away
from the Sun. There, the MAE falls by 19 %, from 0.57 to 0.46, and
the RMSE decreases by a quarter, from 0.71 to 0.57.

3.7 Model evaluation

Finally, we perform a yearly evaluation of the Dst and Kp models.
This analysis will show whether our model is biased by one or more
years that outperform the others, and if a solar cycle trend exists.

For each year at hand, we leave out the events in the 5-year window
centered on that year and fit a model on the remaining data set. We
then take a 3-year window centered on the year at hand as evaluation
data set. The one-year standoff distance guarantees to prevent cross-
talk, which could arise from long-lived CIR. Due to the decreased
evaluation data set of only three years, we compute only one set
of verification metrics that contains all events independent of their
polarity to increase the statistical significance.

Fig. 10(a) and 10(b) show the metrics for the Dst and Kp index
versus the center year of the evaluation dataset. In Fig. 10(a), showing
the metrics for the Dst index, we observe that all the metrics have
a flat trend with only minor fluctuations. Hence, our forecast model
works similarly well for each year, independent of the time in the
solar cycle. The metrics are close to those presented in Table 3 for
the Dst index. The correlation coefficient oscillates around R = 0.66,
while in Table 3 it is about 0.6–0.7 depending on the polarity of the
CHs. This shows that we did not overfit our model. In Fig. 10(b),
showing the evaluation for the Kp index, the results are similar to
those of the Dst index, with a mean correlation coefficient of R =
0.63 compared to 0.65–0.67 in Table 3.

We then perform the same analysis using the observed solar wind
velocity instead of the predicted one, which is shown by the dashed
lines in Fig. 10(a) and 10(b). For the Dst index, we see that the
correlation coefficient increases by a few percent, now being R = 0.71.
The ME, MAE, and RMSE do not undergo noticeable changes. For
the Kp index, we find that all the metrics improve with R becoming
0.75. Moreover, while the Pearson coefficient computed with the
observed solar wind velocity is nearly constant throughout the study
period, the one computed with vpr has a sudden drop around 2017.
This suggests a less good forecast of the solar wind velocity in that
period, probably due to a long-lived CIR being an outlier in our
dataset.

4 CONCLUSIONS

In this paper we investigated the possibility to predict the amplitudes
of the CIR/HSS related Dst dips and Kp peaks by employing remote
sensing observations of the Sun. We focused on the period 2010–
2020, and found 256 geomagnetic events with their corresponding
enhancement in the time-series of the coronal hole areas and coronal
hole polarities derived from a 15 degree wide solar meridional slice,

high-speed stream velocities and interplanetary magnetic field po-
larities. Amongst them, around 83 % of cases showed compatibility
between the polarity of the IMF in HSS at L1 and the polarity of
the open magnetic flux within coronal holes derived from the solar
central-meridian slice. In this analysis, we only employed the events
with matching polarity, corresponding to 212 geomagnetic events.

To build our forecasting model of Dst and Kp indices, we combined
two steps. First, we fit the empirical relationship between solar wind
velocity and coronal hole areas. The fit reveals a decent correlation
between observed and predicted solar wind velocities, even though
the latter were moderately underestimated. Then, we assume Dst and
Kp normalized to the solar wind velocity to be related to Bs. We take
into account the Bs dependency on the polarity of coronal holes, by
splitting up our data set into two subsets: periods where the polarity
of the coronal holes was directed away from the Sun, and periods
where it was directed toward the Sun. Moreover, we consider Bs
depending on the orientation between the Earth’s magnetic field axis
and the IMF, by fitting Dst/v and Kp/v on the DOY. We find that
the Dst/v and Kp/v timelines versus the day of the year resemble
the pair of spectacles pattern of the experimental Bs described by
Verbanac & Bandić (2021). They showed that Bs ordered according
to polarity is maximized around the spring/fall equinox and does
not vanish in fall/spring when the magnetic fields within the coronal
holes in the central meridian point toward/away from the Sun.

To predict the peaks and dips of the geomagnetic indices, we mul-
tiplied the forecasted values of Dst/v and Kp/v, which are dependent
on the day of the year, with the HSSs velocity predicted by the frac-
tional area. The correlation coefficient between the observed and
predicted Dst index is R = 0.63/0.73 for high-speed streams having
a polarity towards/away from the Sun. The corresponding correlation
coefficients for the Kp index are R = 0.65/0.67. To show that a major
source of uncertainty in our forecasting model is due to the scattered
predictions of the solar wind speed from the coronal hole areas, we
multiplied the forecasted values of Dst/v and Kp/v with high-speed
streams velocity measured in situ at L1. We observe that the correla-
tion coefficients and the forecasting verification metrics all undergo
a significant improvement, from approximately 0.6–0.7 to 0.7–0.8.
Furthermore, we performed an evaluation of the Dst and Kp models
on a yearly basis. We observe that the correlation coefficients are
quite stable and do not show any significant solar cycle trend.

Our findings show that, in general, the proposed technique allows
for the prediction of HSS/CIR-driven geomagnetic storms directly
from solar observations. This extends the lead time from hours, when
one employs in situ solar wind data taken at Lagrangian point L1,
to days, when employing solar observations. This increased warning
time is critical for warnings of space weather conditions in the near-
Earth environment and other space weather applications.
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Figure 8: The same as Figure 6, but for the actual HSS velocity measured at L1.

Figure 9: The same as Figure 7, but for the actual velocity measured at L1.
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Figure 10: Yearly evaluation of the Dst and Kp models. Panel (a) displays the forecasting verification metrics for a Dst model that employs
predictions of the solar wind velocity (solid line), or the observed solar wind velocity (dashed line). Panel (b) is the same as panel (a), but for
a Kp model.

DATA AVAILABILITY

Data from SDO/AIA, SDO/HMI, ACE/SWEPAM, ACE/MAG,
Wind/SWE, WDC-2, and the GSFC/SPDF OMNIWeb have open
data policies. Coronal hole data will be shared on reasonable request
to the corresponding author.
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APPENDIX A: GAUSSIAN PROCESS REGRESSION

The Gaussian process regression (GPR; Rasmussen & Williams
2005) is a nonparametric Bayesian approach for regression problems.
A Gaussian process (GP) itself can be thought as a generalization
over functions of the Gaussian distribution. In GPR, we assume the
output " of a function $ at input # as " = $ (#). The function $ can be
completely specified by its mean and covariance functions, written
as $ (#) ∼ %&('(#), 6 (#, #′)), with 6 computed using each pair
(#, #′) in the input #.

The first step of GPR is to approximate $ by another GP,
$ ∗ ∼ %&('∗(#), 6∗(#, #′)), called prior, which specifies some
properties of $ when noted. The prior mean function, '∗(#), en-
codes the central tendency of the observed output, and it will be
assumed to be zero. This choice is made for simplicity and requires
the normalization of the observed output, so that the new mean is ac-
tually zero (see Chilès & Delfiner 2012). To normalize the observed
data, we remove the mean and scale it to unit variance. Only when
the solution of the GPR interpolation is available, we scale it back to
the original representation. The prior covariance function 6∗(#, #′),
also called kernel, encodes information about the shape and structure
the function is expected to have. The most commonly used kernel in
machine learning is the radial basis function (RBF). In this study, it
is employed to estimate the solar wind velocity peaks as a function
of CH area. It has a Gaussian form, defined as:

6∗
RBF (#, #

′) = (2
! exp

(

−
(# − #′)2

2)2
!

)

, (A1)

where # and #′ are every possible pair of CH area values. The hyper-
parameters (! and )! are respectively the standard deviation of the
output signal, which regulates the magnitude of the prior covariance
at each point #, and the isotropic length-scale that controls the rate of
decay of the covariance function between points # and #′. To describe
the ratios Dst/v and Kp/v as functions of the day of the year (DOY),
we make use of a periodic kernel,

6∗
p (#, #

′) = (2
! exp
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−
2
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:
|# − #′ |

7

)

)

, (A2)

where # and #′ are every possible pair of DOY values. Here, (! and
)! are the same as in Equation A1, and 7 is the distance between
repetitions of the function, i.e. the period. In our model, 7 is a
fixed parameter equal to 365.24 days, because it is meant to fit the
annual periodicity of the geomagnetic activity. The kernel function
we choose is used in the next step to get the covariance matrix Σ, such

that the element on the i-th row and j-th column is Σ' ( = 6∗ (#' , # ( ),
with #' and # ( are two possible values assumed by #.

Now let " be the set of the known normalized output measure-
ments of the observed inputs ; , and $ the set of function values
corresponding to the continuous set of inputs #. According to the
Bayesian inference, we can use the prior $ ∗ to find the predictive
normalized GP of $ :

f(#) | " ∼ %&('(#), 6 (#, #′))

'(#) = Σ(; , #)) [Σ(; , ;) + (2
n <]

−1"

6 (#, #′) = Σ(#, #′) + (2
n < − Σ(; , #)) ·

· [Σ(; , ;) + (2
n <]

−1
Σ(; , #′)).

(A3)

Here(n is the identically distributed noise in the observations, which
results in a matrix with zeros everywhere except on the diagonal. This
is represented by the product of the noise variance,(2

n , by the identity
matrix <.

Substituting in Equation A3 the appropriate prior covariance, ei-
ther Equation A1 or A2 depending on the problem we are intending
to solve, we get a set of hyperparameters, = = {(! , )! , (n}. To find
the optimal =, we use as loss function the negative log-likelihood,
>, of the observed output " given the observed input ; , and we
minimize it with respect to =.

> = − log(7(" |#, =)) =

=
1
2

log(Σ(; , ;) + (2
n <) +

1
2
") (Σ(; , ;) + (2

n <)
−1+

+
9

2
log(2:).

(A4)

When the optimal hyperparameters are substituted in Equation A3,
$ is fully defined. We can now write $ as $ (#) ∼ %&('(#),((#)),
where ( is the standard deviation of the predictive function, com-
puted as the squared root of the elements on the 6 diagonal. Since
we fitted the GPR on a set of normalized observed data, we obtained
a normalized $ . To scale it back, ' is multiplied by the standard
deviation and summed to the mean both of the observed data, and (
is multiplied by the standard deviation of the observed data.

APPENDIX B: FORECAST VERIFICATION

Forecast verification is applied to assess the quality of forecasts.
Several scalar measures of forecast accuracy can be computed, such
as the Pearson’s correlation coefficient (R)

2 =

∑*
+=1 ( $+ − $̄ )("+ − "̄)

√

∑*
+=1 ( $+ − $̄ )2

√

∑*
+=1 ("+ − "̄)

2
, (B1)

where $+ and "+ are the kth element of 9 total forecast and observation
pairs, and $̄ and "̄ are their sample mean. R measures how close to
a linear relation are two sets of data. Values closer to 1 represent
stronger linear relationship, hence better predictions.

The other scalar measures hereby used perform an error analysis
of the predictions. The mean error (ME) is given by

?@ =
1
9

*
∑

+=1

( $+ − "+ ), (B2)

is the difference between the average forecast and the average obser-
vation.

The mean absolute error (MAE) is given by

?1@ =
1
9

*
∑

+=1

| $+ − "+ |, (B3)
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is the arithmetic mean of the absolute differences between the forecast
and the observation pairs. Similar to the MAE is the root-mean-
square error (RMSE),

2?A@ =

√

√

√

1
9

*
∑

+=1

( $+ − "+ )
2, (B4)

which is the mean squared difference between forecast and observa-
tion value pairs. The RMSE is a typical magnitude for the forecast
error being more sensitive to outliers. Note that ME, MAE and RMSE
are equal to zero in the case that the forecast errors are equal to zero
(that is $+ = "+ ) and increase with increasing forecast errors.
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